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Рассматривается задача классификации сложноорганизованных многомерных данных, харак-
терная для различных социально-экономических, технических и других систем.  

Целью работы является повышение точности классификации сложноорганизованных много-
мерных данных посредством разработки двухэтапного метода их классификации, основанного на 
совместном применении SVM- и kNN-классификаторов. На первом этапе метода классификации на 
основе исходного учебного набора данных U разрабатывается SVM-классификатор и определяется 
ширина Ω-области, содержащей все ошибочно классифицированные SVM-классификатором объек-
ты, формирующие вместе с правильно классифицированными объектами, попавшими в Ω-область и 
соответствующими метками классов объектов из Ω-области, новый набор данных G. На втором 
этапе метода классификации ко всем объектам набора данных G из Ω-области применяется kNN-
классификатор, разработанный на основе информации об объектах набора U\G. В случае улучшения 
качества классификации объектов, принадлежащих Ω-области, предлагаемый двухэтапный метод 
может быть рекомендован для классификации новых объектов. Значения параметров kNN-
классификатора определяются экспериментально таким образом, чтобы обеспечить максимально 
возможную точность классификации объектов. Поскольку в формируемую вышеуказанным образом 
Ω-область могут попасть и верно классифицируемые объекты, то условием применимости предла-
гаемого метода является общее повышение качества классификации. Приведенные результаты экс-
периментальных исследований подтверждают эффективность применения предлагаемого метода в 
задаче классификации сложноорганизованных многомерных данных. 
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Введение 
В системах интеллектуального анализа дан-

ных (Data Mining, DM) особое место занимает 
проблема классификации, поскольку необходи-
мость в её проведении возникает при решении 
широкого круга прикладных задач, связанных, 
например, с анализом кредитного риска, меди-
цинской диагностикой, распознаванием руко-
писных символов, категоризацией текстов, извле-
чением информации, идентификацией изображе-
ний пешеходов, идентификацией изображений 
лиц, атрибуцией произведений искусства и т.п. 

В настоящее время для разнообразных при-
кладных задач, использующих данные различ-
ных природы и объемов, разработаны десятки 
алгоритмов и методов классификации и их мо-
дификаций, среди которых наиболее известны, в 
частности, линейная и логистическая регрессии, 
байесовский классификатор, деревья решений, 
решающие правила, нейронные сети, алгоритм 
k -ближайших соседей (kNN-алгоритм, k Nearest 

Neighbors Algorithm), алгоритм опорных векто-
ров (SVM-алгоритм, Support Vector Machine Al-
gorithm) и т.п. [1-4]. 

Разработка того или иного классификатора 
предполагает выполнение процедур обучения и 
тестирования, при приемлемом качестве кото-
рых классификатор может быть применен для 
классификации новых объектов. Для оценки ка-
чества построенного классификатора могут ис-
пользоваться различные общеизвестные показа-
тели качества классификации, такие как: показа-
тель F -меры, показатель чувствительности, по-
казатель специфичности, показатель точности, 
показатель полноты и т.п. [4, 5]. Кроме того, 
может быть выполнен анализ ROC-кривой. 

Следует отметить, что не существует уни-
версальных алгоритмов и методов классифика-
ции. Более того, применение различных инстру-
ментов моделирования к одному и тому же на-
бору объектов может привести к различным ре-
зультатам. Это связано с тем, что в основу этих 
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инструментов заложены различные принципы 
моделирования, различаются и используемые в 
них метрики (меры расстояния), функции близо-
сти, критерии оптимальности, алгоритмы опти-
мизации, способы выбора начальных приближе-
ний, способы работы с разнотипными характе-
ристиками и т.п. [1-10]. 

В последние годы для решения многих клас-
сификационных задач успешно применяется 
SVM-алгоритм, осуществляющий обучение по 
прецедентам («обучение с учителем») и входя-
щий в группу граничных алгоритмов и методов 
классификации. SVM-алгоритм обеспечивает 
построение бинарного SVM-классификатора, 
реализуя с помощью специальной функции, на-
зываемой функцией ядра, перевод векторов ха-
рактеристик классифицируемых объектов в про-
странство более высокой размерности и поиск в 
этом пространстве гиперплоскости с максималь-
ным зазором, разделяющей объекты с разной 
классовой принадлежностью [1-4]. По обеим 
сторонам разделяющей гиперплоскости строятся 
две параллельные гиперплоскости, задающие 
границы классов и находящиеся на максимально 
возможном расстоянии друг от друга. Предпола-
гается, что чем больше расстояние между этими 
параллельными гиперплоскостями, тем уверен-
нее можно классифицировать объекты [1-4]. 

Несмотря на то, что способность к обобще-
нию у SVM-алгоритма лучше, чем у других ал-
горитмов и методов классификации, существуют 
трудности в его применении, связанные с выбо-
ром типа функции ядра, значений параметров 
функции ядра и значения параметра регуляриза-
ции, влияющих на качество классификации данных. 

Используемые при построении SVM-
классификатора тип функции ядра, значения па-
раметров функции ядра и значение параметра 
регуляризации предлагается определять с помо-
щью модифицированного PSO-алгоритма [5, 11-
13], позволяющего сократить временные затраты 
на поиск оптимальных значений параметров 
SVM-классификатора, что очень важно при 
классификации сложноорганизованных много-
мерных данных больших объемов. Значения па-
раметров SVM-классификатора будем считать 
оптимальными, если достигнута высокая точ-
ность классификации: количество ошибок на 
обучающем и тестовом наборах минимально, 
причем количество ошибок обученного SVM-
классификатора на объектах тестовой выборки 
не сильно отличается от количества ошибок на 
обучающей выборке (во избежание «переобуче-
ния» SVM-классификатора). 

В большинстве случаев SVM-классификатор, 
построенный на основе модифицированного 

PSO-алгоритма, обеспечивает высокое качество 
классификации данных при приемлемых времен-
ных затратах [11-13]. При этом, как показывают 
результаты экспериментальных исследований, 
большинство ошибочно классифицированных 
объектов попадают внутрь полосы, разделяющей 
классы. В связи с этим целесообразна разработка 
методов, позволяющих повысить точность клас-
сификационных решений посредством уменьше-
ния числа ошибок внутри разделяющей полосы. 

Один из современных подходов к решению 
проблемы повышения точности классификацион-
ных решений предполагает ансамблирование тем 
или иным образом различных классификаторов с 
целью получения итогового классификационного 
решения более высокого качества [4, 13-19]. 

Как показывают результаты эксперимен-
тальных исследований, ансамбли классификато-
ров в случае их правильной конфигурации и на-
стройки делают меньшее число ошибок класси-
фикации, чем каждый из участников ансамбля 
по отдельности. В связи с этим возникает необ-
ходимость в анализе результирующего класси-
фикационного решения, полученного путем 
применения к одному набору объектов несколь-
ких алгоритмов и методов классификации. Оче-
видно, что ансамблирование вполне успешно 
может быть применено и в случае применения 
SVM-классификатора. При этом возможно как 
создание ансамбля, состоящего только из одних 
SVM-классификаторов [4, 13-15], так и сочета-
ние в ансамбле наряду с SVM-классификатором 
какого-либо другого классификатора, принципи-
ально отличного от SVM-классификатора по 
применяемому в нем инструментарию [20, 21]. 

Поскольку разработка SVM-классификатора 
связана с существенными временными затрата-
ми на определение оптимальных типа функции 
ядра, значений параметров функции ядра и зна-
чения параметра регуляризации, то одним из не-
маловажных требований, которые могут быть 
предъявлены к вводимому в ансамбль новому 
классификатору, наряду с требованием об обес-
печении высокой точности классификации, яв-
ляется требование о незначительности времен-
ных затрат на разработку классификатора. 

В качестве такого классификатора, в частно-
сти, может быть использован kNN-класси-
фикатор на основе kNN-aлгоритма, который при 
определенных условиях, описываемых ниже, 
позволит повысить общую точность классифи-
кации данных при обеспечении незначительного 
увеличения временных затрат. kNN-классифика-
тор является простейшим метрическим класси-
фикатором, основанным на оценке сходства не-
которого объекта с другими k объектами – его 
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ближайшими соседями. При этом классифици-
руемый объект относится к тому классу, к кото-
рому принадлежит большинство из его k бли-
жайших соседей-объектов [1, 2, 6, 7]. 

В настоящее время известен ряд подходов, 
реализующих совместное использование SVM- и 
kNN-классификаторов. Так, в [20] предлагается 
применять локальный SVM-классификатор для 
классификации объекта, ошибочно классифици-
рованного kNN-классификатором, используя дан-
ные о ближайших соседях этого объекта при раз-
работке SVM-классификатора. В [21] предлагает-
ся использовать при разработке kNN-
классификатора, который должен уточнить клас-
совую принадлежность объектов внутри разде-
ляющей полосы, информацию об опорных векто-
рах SVM-классификатора. Тем не менее, все 
предложенные подходы пока еще далеки от со-
вершенства, а их эффективность очевидна лишь 
при решении задач классификации с определен-
ным типом структуры данных. Очевидно, в част-
ности, что разработка локальных SVM-
классификаторов сопряжена с дополнительными 
временными затратами как на определение опти-
мального числа соседей классифицируемого объ-
екта, так и на непосредственную разработку 
SVM-классификатора, а использование информа-
ции об опорных векторах SVM-классификатора 
при разработке kNN-классификатора требует 
предварительной тщательной проверки объек-
тивности их определения. 

В данной работе предлагается двухэтапный 
метод классификации, основанный на совмест-
ном применении SVM- и kNN-алгоритмов и 
обеспечивающий повышение точности класси-
фикации сложноорганизованных многомерных 
данных. При этом на первом этапе метода клас-
сификации на основе исходного учебного набора 
данных об объектах будет разрабатываться 
SVM-классификатор и определяться ширина -
области, содержащей все объекты, ошибочно 
классифицированные SVM-классификатором. 
На втором этапе метода классификации на осно-
ве данных обо всех объектах, оказавшихся вне 
-области, будет разрабатываться kNN-
классификатор с целью улучшения качества 
классификации объектов, принадлежащих -
области. В случае улучшения качества класси-
фикации объектов, принадлежащих -области, 
предлагаемый двухэтапный метод может быть 
применен для классификации новых объектов. 

Разработка SVM-классификатора 
При разработке SVM-классификатора ис-

пользуется учебный набор данных: 
},,...,,{ 11  ss yzyzU , в котором каждый 

кортеж  ii ,yz  содержит информацию об объ-
екте Zzi   и число }1;1{ Yyi , опреде-
ляющее метку класса, к которому принадлежит 
объект iz  [1-5, 11-19]. Набор объектов Z  пред-
ставляет собой объединение набора объектов Z , 
метка класса которых принимает значение «−1», 
и набора объектов Z , метка класса которых 
принимает значение «+1», т.е.   ZZZ . Ка-
ждый объект Zzi   представлен q -мерным век-

тором числовых характеристик ),,,( 21 q
iiii zzzz   

(нормированных значениями из отрезка [0, 1]), 
где l

iz – числовое значение l -й характеристики 

для i -го объекта ( si ,1 , ql ,1 ) [11-19].  
Вышеуказанный учебный набор данных U  

многократно случайным образом разбивается на 
обучающую и тестовую выборки, состоящие со-
ответственно из S  и Ss   кортежей ( Ss  ), с 
целью реализации многократного обучения и 
тестирования формируемых SVM-классифи-
каторов с последующим определением лучшего 
классификатора в смысле обеспечения макси-
мально возможной точности классификации. 
При этом для каждого SVM-классификатора оп-
ределяются тип функции ядра ),(  zzi , значе-
ния параметров функции ядра и значение пара-
метра регуляризации C  ( 0C ), позволяющего 
найти компромисс между максимизацией шири-
ны полосы, разделяющей классы, и минимиза-
цией суммарной ошибки. 

При разработке SVM-классификатора с при-
менением функции ядра ),(  zzi  определяется 
классифицирующая функция YZF   : , устанав-
ливающая для объекта Zzi   его класс принад-
лежности }1;1{ Yyi . В качестве функции 
ядра ),(  zzi  обычно используются следующие 
функции: линейная  zzzz ii ),( ; полиноми-

альная d
ii zzzz 1)(),(   ; радиальная базис-

ная ))2/()()((),( 2   zzzzexpzz iii ; сиг-
моидная )(),( 12  zzkkthzz ii  , где zzi   – 
скалярное произведение векторов iz  и z ; d  [

Νd   (по умолчанию 3d )],   [ 0  (по 
умолчанию 12  )], 2k  [ 02 k  (по умолчанию 

12 k )] и 1k  [ 01 k  (по умолчанию 11 k )] – 
некоторые параметры; th  – гиперболический 
тангенс [1-5, 11-19]. 

В случае линейной разделимости классов в 
результате обучения SVM-классификатора стро-
ится гиперплоскость, разделяющая объекты из 
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Z  на два класса: 0 bzw , где w  − вектор 
нормали к гиперплоскости, b   параметр, за-
дающий смещение гиперплоскости относитель-
но начала координат, zw  − скалярное произ-
ведение вектора w  нормали к гиперплоскости и 
вектора характеристик некоторого объекта z  
[14]. Условие 11  bzw  задает полосу, 
которая разделяет классы. Чем шире эта полоса, 
тем увереннее можно классифицировать объек-
ты. Для максимизации ширины полосы 

)(2 ww   таким образом, чтобы внутрь нее не 
попал ни один объект из обучающей выборки, 
должна быть решена задача квадратичной опти-
мизации [14]: 

 







.,1,1)(
,min

Sibzwy
ww

ii
 

В случае линейной неразделимости классов 
задача построения разделяющей гиперплоскости 
(с учетом теоремы Куна  Таккера) сводится к 
задаче квадратичного программирования, содер-
жащей только двойственные переменные i  
( Si ,1 ) [14]: 
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В результате обучения SVM-классификатора 
определяются опорные векторы, являющиеся 
векторами характеристик тех объектов iz  из обу-
чающей выборки, для которых значения соответ-
ствующих им двойственных переменных i  от-
личны от нуля ( 0i ) [1-4]. Опорные векторы 
находятся ближе всего к разделяющей гиперпло-
скости и несут всю информацию о разделении 
классов. 

В результате обучения определяется клас-
сифицирующая функция, устанавливающая для 
произвольного объекта z  его класс принадлеж-
ности с меткой «−1» или «+1» [1-4]: 

   





 


bzzysignzF ii
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где ii yzwb  ;  


S

i
iii zyw

1
 . 

При этом суммирование в правиле (1) вы-
полняется только по опорным векторам (то есть 
по векторам, для которых 0i ). 

Основная проблема, возникающая при раз-
работке SVM-классификатора, связана с отсут-
ствием рекомендаций по выбору типа функции 

ядра ),( ji zz , значений параметров функции 
ядра и значения параметра регуляризации C , 
при которых будет обеспечена высокая точность 
классификации объектов. Данная проблема мо-
жет быть решена с применением тех или иных 
оптимизационных алгоритмов, например с ис-
пользованием PSO-алгоритма, хорошо зареко-
мендовавшего себя при решении широкого спек-
тра задач оптимизации. 

PSO-алгоритм является алгоритмом случай-
но-направленного поиска. Данный алгоритм ра-
ботает со случайно сгенерированной популяцией 
решений и выполняет расчет значений целевой 
функции, осуществляя в процессе эволюции по-
иск лучшего решения [22]. В частности, при раз-
работке SVM-классификатора для выбора пара-
метров, обеспечивающих высокую точность 
классификации объектов, может быть использо-
ван традиционный или модифицированный PSO-
алгоритм [4, 11-13]. 

Поскольку большая часть ошибочно-класси-
фицированных SVM-классификатором объектов 
располагается вблизи гиперплоскости, разде-
ляющей классы, то еще один подход к повыше-
нию качества классификации заключается в 
применении дополнительного инструментария, 
способствующего повышению качества класси-
фикации для объектов, расположенных вблизи 
разделяющей гиперплоскости. В качестве такого 
инструментария может быть использован kNN-
классификатор [1, 6, 7]. 

Разработка kNN-классификатора 

При разработке kNN-классификатора на ос-
нове kNN-алгоритма, как и при разработке SVM-
классификатора на основе SVM-алгоритма, ис-
пользуется учебный набор данных: U   

1 1{ ,..., }s sz ,y z ,y     , который также случай-
ным образом разбивается на обучающую и тес-
товую выборки, состоящие соответственно из S  
и Ss   кортежей ( Ss  ) с целью реализации 
многократного обучения и тестирования форми-
руемых в результате kNN-классификаторов с 
последующим определением лучшего классифи-
катора в смысле обеспечения максимально воз-
можной точности классификации. При этом для 
каждого kNN-классификатора определяется зна-
чение числа соседей k, при котором ошибка 
классификации минимальна. Класс принадлеж-
ности Yyi   объекта Zzi   определяется клас-
сом принадлежности большинства объектов из 
числа k ближайших соседей объекта Zzi  . 

Реализация kNN-алгоритма для определения 
класса принадлежности произвольного объекта 
z  при фиксированном числе k ближайших сосе-
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дей предполагает выполнение следующей по-
следовательности шагов. 

1. Вычислить расстояние ( ,z )id z  от объекта 
z  до каждого из объектов zi , классовая принад-
лежность которых известна. Выполнить упоря-
дочение вычисленных расстояний по возраста-
нию их значений. 

2. Выбрать k  объектов zi  ( k ближайших 
соседей), наиболее близко расположенных к 
объекту z . 

3. Выявить классовую принадлежность каж-
дого из k  ближайших соседей объекта z . Уста-
новить для произвольного объекта z  в качестве 
его класса принадлежности класс, наиболее ха-
рактерный для его k  ближайших соседей. 

Для оценки расстояния между объектами в 
kNN-алгоритме могут использоваться различные 
меры расстояния, такие как евклидова мера, 
манхэттенская мера, косинусная мера и др. [1]. 

При этом наиболее часто используется евк-
лидова мера расстояния [1, 6]: 

 2 1 2

1
( , ) ( ( ) )

q
l l

i i
l

d z z = z z


 , (2) 

где q  – число характеристик объектов iz  и z . 
При реализации kNN-алгоритма могут при-

меняться такие способы голосования, как про-
стое невзвешенное голосование и взвешенное 
голосование [1, 6]. 

При использовании простого невзвешенного 
голосования расстояние от объекта z  до каждо-
го из k объектов  ближайших соседей iz  
( 1,i k ) не играет роли: все k объектов  бли-
жайших соседей iz  ( 1,i k ) имеют равные права 
в определении класса объекта z . Каждый из k 
объектов  ближайших соседей iz  ( 1,i k ) объ-
екта z  голосует за его отнесение к своему клас-
су ,iz zy . В результате реализации kNN-алгоритма 
объект z  будет отнесен к тому классу, который 
наберет большее число голосов: 

  


k

i
z,zYy

|yy|maxarg
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 . (3) 

При использовании взвешенного голосова-
ния учитывается расстояние от объекта z  до ка-
ждого из k объектов  ближайших соседей iz  
( 1,i k ): чем меньше расстояние, тем более зна-
чимый вклад в оценку принадлежности объекта 
z  к некоторому классу вносит голос объекта-
соседа iz  ( 1,i k ). 

Оценка суммарного вклада голосов объек-
тов-соседей iz  ( ki ,1 ) за принадлежность объ-
екта z  классу Yy  при взвешенном голосова-
нии может быть рассчитана как [1]: 

  


k

i
i

i zzd1
2 ),(

1  , (4) 

где 0i , если ,iz zy y  и 1i , если ,iz zy y . 
Класс, которому соответствует наибольшее 

значение оценки (4), назначается рассматривае-
мому объекту z . 

При невзвешенном голосовании расстояние 
между объектами iz  и z  может быть вычислено  
на основе функции ядра [21]: 
 ),(),(2),(),(2 zzκzzκzzκ=zzd iiii  . (5) 

Двухэтапный метод классификации 

Как показывают результаты эксперименталь-
ных исследований, ни один классификатор дан-
ных не может быть признан несомненно лучшим 
по отношению к другим классификаторам, по-
скольку не позволяет обеспечить высокое каче-
ство классификации для любых произвольных 
наборов данных ввиду специфики применяемого 
при его разработке инструментария и соответст-
венно ограниченности его возможностей. 

Успешно применяемый в последние годы 
SVM-классификатор на подавляющем большин-
стве сложноорганизованных многомерных набо-
рах данных обеспечивает приемлемое качество 
классификации [4, 11-14]. При этом анализ рас-
положения объектов, ошибочно классифициро-
ванных SVM-классификатором, показал, что 
большинство из них попадает внутрь полосы, 
разделяющей классы и задаваемой условием 

11  bzw . Уточнение классификацион-
ного решения для объектов, оказавшихся внутри 
разделяющей полосы, предлагается осуществить 
с помощью двухэтапного метода классифика-
ции, основанного на совместном использовании 
SVM- и kNN-классификаторов. 

Предлагаемый двухэтапный метод класси-
фикации данных может быть реализован сле-
дующим образом. 

Этап 1. Разработка SVM-классификатора с 
определением возможности разработки kNN-
классификатора. 

1.1. Разработка SVM-классификаторов с по-
следующим выбором лучшего из них в смысле 
обеспечения наиболее высокой точности клас-
сификации на учебном наборе данных U  осуще-
ствляется на основе сформированных случай-
ным образом обучающей и тестовой выборок. 
Заданные при разработке SVM-классификатора 
тип функции ядра, значения параметров ядра, 
значение параметра регуляризации определяют 
гиперплоскость, разделяющую объекты на два 
класса с метками «–1» и «+1». Оценка качества 
классификации данных осуществляется с при-
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менением таких показателей качества, как пока-
затель общей точности классификации ( Accur ), 
показатель специфичности ( Sp ), показатель чув-
ствительности ( Se ), показатель F -меры, пока-
затель testAUC , рассчитанный по тестовой вы-
борке, и др., а также число ошибок I и II рода: 

IEr и IIEr  и число ошибок на обучающей и тес-
товой выборках: trainEr  и testEr . 

1.2. Определение областей  и  , содер-
жащих все ошибочно классифицированные объек-
ты, оказавшиеся в наборах Z  и Z  соответствен-
но; 

d   ширины области  ; 
d   ширины 

области  ; 
N   числа объектов в области  ; 


N   числа объектов в области  . Формирова-

ние на основе областей  и   итоговой  -
области, включающей в себя все ошибочно клас-
сифицированные объекты, образующие вместе с 
правильно классифицированными объектами, 
попавшими в  -область и соответствующими 
метками классов объектов из  -области, набор 
данных },,...,,{ 11 

 NN yzyzG , в котором 
каждый кортеж  ii yz ,  содержит информацию 
об объекте iz  из  -области, и соответствующую 
объекту iz  метку класса }1;1{ Yyi . 

При этом возможно использование двух ва-
риантов формирования  -области, в результате 
реализации которых будут получены: 

− асимметричная относительно разделяю-
щей гиперплоскости  -область:  ; 

− симметричная относительно разделяющей 
гиперплоскости  -область, содержащая объек-
ты, находящиеся относительно разделяющей 
гиперплоскости на расстоянии, не превышаю-
щем  : },{max   dd . 

1.3. Формирование набора данных GUW \  
удалением из учебного набора данных U  корте-
жей набора данных G . Набор W  будет состоять 
только из тех кортежей набора U , классовая 
принадлежность объектов для которых SVM-
классификатором была определена правильно. 
Объекты этого набора впоследствии будут ис-
пользованы для разработки kNN-классификатора. 
Поскольку в  -области помимо ошибочно клас-
сифицированных объектов может находиться и 
некоторое число объектов, классифицированных 
правильно, то возможно, что число кортежей в 
наборе W  окажется существенно меньше, чем в 
U , и их будет недостаточно для последующей 
разработки kNN-классификатора. 

Этап 2. Разработка kNN-классификатора. 
2.1. Разработка на основе набора данных 

GUW \  kNN-классификаторов, устанавли-

вающих классовую принадлежность всех объек-
тов  - области при различных значениях числа 
k ближайших соседей из набора W  c использо-
ванием различных способов голосования (3) и (4) 
и различных способов оценки близости между 
объектами [например, в соответствии с (2) и (5)]. 
Выбор лучшего kNN-классификатора в смысле 
обеспечения наиболее высокой точности клас-
сификации всех объектов  -области и фиксация 
значений параметров лучшего kNN-класси-
фикатора: варианта рассматриваемой  -об-
ласти, используемого способа оценки близости 
между объектами, способа голосования и опти-
мального числа соседей. 

2.2. Сравнение качества итоговой классифи-
кации данных с применением лучшего kNN-
классификатора с качеством классификации, по-
лученным после разработки SVM-классифика-
тора, с целью выявления целесообразности при-
менения сформированного таким образом клас-
сификатора для определения классовой принад-
лежности новых объектов, при этом целесооб-
разность применения определяется улучшением 
показателей качества классификации объектов 
из набора Z . 

В случае выявления целесообразности при-
менения разработанного классификатора для 
классификации новых объектов она может быть 
выполнена в соответствии со следующей после-
довательностью шагов: 

− разделить новые объекты на два класса с 
помощью разработанного SVM-классификатора; 

− выделить из новых объектов те, которые 
оказались внутри  -области, сформированной в 
п. 1.2, и для этих объектов произвести уточнение 
классификационного решения с использованием 
kNN-классификатора (с определенными в п. 2.1 
способом оценки близости между объектами, 
способом голосования и числом соседей, при 
которых улучшается качество классификации 
объектов из набора Z ). 

При реализации предлагаемого двухэтапно-
го метода классификации разработка kNN-
классификатора осуществляется при различных 
значениях числа k ближайших соседей. В случае 
бинарной классификации при использовании 
простого невзвешенного голосования логично 
использовать нечетные значения k во избежание 
ситуаций, когда за разные классы проголосовало 
одинаковое число соседей. 

При разработке kNN-классификатора при-
дется иметь дело уже не со всем исходным учеб-
ным набором данных U , а с набором сущест-
венно меньшей мощности, содержащим лишь 
информацию об объектах, попавших в Ω-
область, а также об их классовой принадлежно-
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сти. Использование нового дополнительного ин-
струментария – kNN-классификатора, в котором 
используются принципы интеллектуального 
анализа данных, отличные от принципов, зало-
женных в SVM-классификатор, позволит в ряде 
случаев повысить общую точность классифика-
ции данных. 

Ограничения на применимость предлагаемо-
го двухэтапного метода классификации связаны 
с тем, что из-за большой ширины  -области 
или чрезмерной скученности объектов набора Z  
внутри  -области число кортежей в наборе 

GUW \  может оказаться недостаточным для 
последующей разработки kNN-классификатора. 

Экспериментальные исследования 
Экспериментальные исследования произво-

дились на основе ПЭВМ, работающей под 64-
разрядной версией Windows 10 с оперативной 
памятью 8 Гб и двухядерным процессором 
Intel® Core™ i5-7200U с тактовой частотой каж-
дого ядра 2,5 ГГц. В ходе исследований исполь-
зовалась программная реализация SVM-
алгоритма, предоставляемая системой инженер-
ных и научных расчетов Matlab 7.12.0.635. 

Для визуального представления результатов 
применения предложенного двухэтапного метода 
в задаче бинарной классификации был рассмот-
рен демонстрационный набор данных Demo , 
включающий 115 объектов с двумя характери-
стиками ( 2q ). При этом класс принадлежно-
сти 95 объектов ( 95s ), вошедших в учебный 
набор данных U , был заранее определен, а клас-
совую принадлежность еще 20 объектов, вошед-
ших в набор V , необходимо было установить. 

На рисунке 1 представлено расположение 
объектов из демонстрационного набора данных 
Demo в пространстве D-2 с разбиением набора 
объектов Z  на набор Z , объекты которого по-
мечены маркером «крестик» и принадлежат пер-
вому классу, и набор *Z , объекты которого по-
мечены маркером «звездочка» и принадлежат 
второму классу ( *ZZZ   ). Объекты набора 
V  с неизвестной классовой принадлежностью 
помечены маркером «треугольник». 

В ходе реализации первого этапа предлагае-
мого двухэтапного метода классификации при 
разработке SVM-классификатора с использовани-
ем радиальной базисной функции с параметрами, 
заданными по умолчанию ( 1  и 1C ), на 
сформированных случайным образом обучающей 
и тестовой выборках была построена кривая, раз-
деляющая классы (рисунок 2). Мощность тесто-
вой выборки составила 20 % от мощности учеб-
ного набора данных U . Объекты каждого класса, 

вошедшие в тестовую выборку, помечены марке-
рами меньшего размера, чем объекты, образую-
щие обучающую выборку. Объекты, класс при-
надлежности которых необходимо определить 
(помеченные маркером «треугольник» на рисун-
ке 1), на рисунке 2 не представлены. Определен-
ные SVM-классификатором опорные векторы (в 
количестве 24 штук) дополнительно помечены 
маркером «кружок». Объекты, классовая при-
надлежность которых SVM-классификатором 
определена неверно, обозначены номерами 1 – 4. 

 
Рисунок 1  Представление демонстрационного 

набора данных Demo  в пространстве D-2 

 
Рисунок 2  Результаты разделения 

демонстрационного набора данных Demo  
на классы 

Как видно из рисунка 2, три объекта из набо-
ра *Z , а именно объекты с номерами 1, 2 и 3, 
ошибочно отнесены SVM-классификатором в на-
бор Z , сопоставленный первому классу, а объект 
с номером 4, принадлежащий набору Z , оши-
бочно отнесен в набор *Z , сопоставленный вто-
рому классу.  

Таким образом, SVM-классификатор допус-
тил 4 ошибки на обучающей выборке, а при клас-
сификации объектов, вошедших в тестовую вы-
борку, SVM-классификатор не допустил ошибок. 
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Рисунок 3  Учебный набор данных без объектов 

 -области 

 
Рисунок 4  Результат SVM-классификации 

(без  -области) 

При этом все 4 ошибочно классифицирован-
ных объекта определены SVM-классификатором 
в качестве опорных векторов. 

Оценка качества классификации показала, 
что значение показателя F-меры равно 96 %. 

Перед реализацией второго этапа предлагае-
мого двухэтапного метода классификации пред-
варительно для каждого класса были определе-
ны: области * и  , содержащие все ошибочно 
классифицированные объекты, оказавшиеся в 
наборах *Z  и Z  соответственно; *d


  ширина 

области * ; 
d   ширина области  ; *N


  

число объектов в области * ; 
N   число объ-

ектов в области  , а также результирующая 
-область, содержащая все ошибочно классифи-
цированные объекты (при этом в  -области 
может находиться и некоторое число объектов, 
классифицированных правильно). 

Необходимо отметить, что для демонстраци-
онного набора данных Demo  принятые в теорети-
ческой части обозначения для наборов Z  и Z , 

областей  и  , ширины областей 
d  и 

d , 

числа объектов 
N  и 

N  заменены в целях луч-

шей визуализации на обозначения *Z  и Z , * и 
 , *d


 и 

d , *N


 и 
N  соответственно. 

Уточнение результатов классификации для 
объектов, вошедших в  -область, содержащую 
все ошибочно классифицированные объекты, 
выполнялось с использованием kNN-алгоритма, 
при этом рассматривались два варианта  -
области: 

− асимметричная относительно разделяю-
щей кривой  -область:  * ; 

− симметричная относительно разделяющей 
кривой  -область, содержащая объекты, находя-
щиеся относительно разделяющей кривой на рас-
стоянии, не превышающем  : }{ 

 d,dmax * . 
Вариант 1. При использовании асиммет-

ричной  -области на основе разработанного 
SVM-классификатора было получено, что 

079,0
*d , 1

*N , 503,0
d , 7

N . 
Внутрь  -области попало 8 объектов (это объ-
екты с номерами 1 – 8 на рисунке 2). 

В результате удаления из учебного набора 
U  кортежей набора G , содержащих информа-
цию об объектах, оказавшихся в  -области, и 
соответствующих им метках класса, был полу-
чен набор данных GUW \ , состоящий только 
из кортежей, для объектов которых классовая 
принадлежность SVM-классификатором была 
определена правильно (рисунок 3). 

На основе информации о классовой принад-
лежности объектов набора данных GUW \  
для объектов  -области была выполнена разра-
ботка kNN-классификатора при числе соседей, 
изменяющемся от 1 до 51 (с шагом 2), и различ-
ными способами оценки близости объектов. При 
оценке качества kNN-классификации выполня-
лось сравнение меток классов объектов  -
области, определенных с помощью kNN-класси-
фикатора, и исходных меток классов объектов 
 -области, зафиксированных в учебном наборе 
U . В качестве лучшего был определен kNN-
классификатор с числом соседей, равным 7. При 
этом оценка близости между объектом и его со-
седями осуществлялась с помощью евклидовой 
меры при невзвешенном голосовании. В итоге 
число ошибок классификации объектов в  -
области удалось сократить с 4 до 2, повысив 
значение показателя F-меры до 98 % (что на 2 % 
выше значения показателя F-меры SVM-
классификатора). 

Вариант 2. При использовании симметрич-
ной  -области на основе разработанного SVM-
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классификатора было получено, что 005,1d , 
10N . Внутрь  -области попало 10 объектов 

(это объекты с номерами 1 – 10 на рисунке 2). В 
результате удаления из учебного набора U  кор-
тежей набора G , содержащих информацию об 
объектах, оказавшихся в  -области, и соответ-
ствующих им метках класса, был получен набор 
данных GUW \ , состоящий только из корте-
жей, для объектов которых классовая принад-
лежность SVM-классификатором была опреде-
лена правильно. На основе этого набора данных, 
как и в варианте 1, была выполнена разработка 
kNN-классификатора при числе соседей, изме-
няющемся от 1 до 51 (с шагом 2), и различными 
способами оценки близости объектов. При оцен-
ке качества kNN-классификации выполнялось 
сравнение меток классов объектов  -области, 
определенных с помощью kNN-классификатора, 
и исходных меток классов объектов  -области, 
зафиксированных в учебном наборе U . В каче-
стве лучшего был определен kNN-класси-
фикатор с числом соседей, равным 3. При этом 
степень близости между объектом и его соседя-
ми определялась с помощью евклидовой метри-
ки при невзвешенном голосовании. В итоге чис-
ло ошибок классификации объектов в  -
области удалось сократить с 4 до 3, повысив 
значение показателя F-меры до 97,03 % (что на 
1,03 % выше значения показателя F-меры SVM-
классификатора). 

Поскольку в рассматриваемом случае при 
совместном применении SVM- и kNN-
классификаторов произошло улучшение качест-
ва классификации объектов, принадлежащих Ω-
области, предлагаемый двухэтапный метод был 
применен для классификации новых объектов 
(помеченных на рисунке 1 маркером «треуголь-
ник»). При этом при уточнении результатов 
классификации с использованием kNN-
алгоритма для объектов, вошедших в  -
область, качество классификации было улучше-
но при каждом варианте  -области (то есть и 
для симметричной, и для асимметричной  -
области). Однако, поскольку для учебного набо-
ра данных U  большее улучшение было достиг-
нуто при рассмотрении асимметричной  -
области, то и при классификации новых объек-
тов, принадлежащих Ω-области, рассматривался 
ее асимметричный вариант. 

В результате применения разработанного 
SVM-классификатора к новым объектам, они 
были разделены на наборы *Z  и Z , соответст-
вующие классам с метками «звездочка» и «кре-
стик». На рисунке 4 новые объекты помечены 
маркером «треугольник». Объекты из обучаю-

щей и тестовой выборок, попавшие в асиммет-
ричную  -область, на рисунке 4 не показаны. 
Из 20 новых объектов два объекта попали в 
асимметричную  -область: на рисунке 4 они 
обозначены номерами 11 и 12, при этом SVM-
классификатор определил объект с номером 11 в 
набор *Z , соответствующий классу с меткой 
«звездочка», а объект с номером 12 – в набор Z , 
соответствующий классу с меткой «крестик». 

Для новых объектов, оказавшихся внутри 
асимметричной  -области (то есть для объектов 
с номерами 11 и 12), результаты классификации 
уточнялись с помощью kNN-классификатора. 
Значения параметров kNN-классификатора, 
обеспечивающие максимально возможную точ-
ность классификации объектов, были определе-
ны экспериментально: было установлено, что 
лучшее качество классификации обеспечивается 
при рассмотрении асимметричной  -области, в 
которой степень близости между объектами оп-
ределяется с помощью евклидовой метрики при 
невзвешенном голосовании при оптимальном 
числе соседей, равном 7. 

Применение kNN-классификатора к объекту 
с номером 11 не изменило его классовой при-
надлежности, а объект с номером 12 был отнесен 
kNN-классификатором к набору *Z , соответст-
вующему классу с меткой «звездочка», т.е. kNN-
классификатор изменил результат SVM-
классификации. 

Целесообразность использования предла-
гаемого двухэтапного метода классификации 
была подтверждена и на реальных наборах дан-
ных, взятых из проекта Statlog и репозитория за-
дач машинного обучения UCI Machine Learning 
Repository, традиционно используемых для тес-
тирования разрабатываемых алгоритмов машин-
ного обучения. В частности, были использованы 
наборы данных медицинской диагностики 
(WDBC и Heart, источники http://archive.ics. 
uci.edu/ml/machine-learning-databases/breast-
cancer-wisconsin/ и http://archive.ics.uci.edu/ml/ 
machine-learning-databases/statlog/heart/), кредит-
ного скоринга (Firms и German, источники [4] и 
http://archive.ics.uci.edu/ml/machine-learning-
databases/statlog/german/) и обработки сигналов 
(Ionosphere, источник https://archive.ics.uci.edu/ 
ml/machine-learning-databases/ionosphere/) (таб-
лица 1). На всех наборах данных имеет место 
случай бинарной классификации. В столбце 1 
таблицы 1 содержится название учебного набора 
данных, количество объектов и число характери-
стик у каждого объекта классификации. 

Для каждого учебного набора в таблице 1 
представлены значения параметров классифика-
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торов и значения показателей качества класси-
фикации для двух разработанных на сформиро-
ванных случайным образом обучающей и тесто-
вой выборках SVM-классификаторов с исполь-
зованием функции ядра, указанной в столбце 2 
таблицы 1 (для радиальной базисной функции-
ядра указывается сокращение rbf, для полиноми-
альной – poly). При разработке SVM-классифи-
каторов использовались значения параметров 
ядра и значение параметра регуляризации, за-
данные по умолчанию ( 1 , 3d  и 1C ). 
Мощность тестовой выборки составляет 20 % от 
мощности учебного набора данных U . 

Число определенных в результате обучения 
SVM-классификатора опорных векторов содер-
жится в столбце 3 таблицы 1. 

Столбец 7 таблицы 1 показывает, какой тип 
классификатора использовался для соответст-

вующего набора данных: запись SVM означает, 
что разрабатывался SVM-классификатор на ос-
нове типа ядра из столбца 2; запись +aSim озна-
чает, что после разработки SVM-классификатора 
производилось уточнение результатов класси-
фикации с применением kNN-классификатором 
для объектов, попавших в aсимметричную отно-
сительно разделяющей гиперплоскости  -
область (вариант 1); запись +Sim означает, что 
после разработки SVM-классификатора произ-
водилось уточнение результатов классификации 
с применением kNN-классификатора для объек-
тов, попавших в симметричную относительно 
разделяющей гиперплоскости  -область (вари-
ант 2). Значение ширины  -области ( d ) и 
число объектов, оказавшихся внутри нее ( N ), 
приведены в столбцах 8 и 9 соответственно. 

Таблица 1 – Значения параметров классификаторов и значения показателей качества классификации 

Набор 
данных 

 

SVM-классификация 
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ErI ErII 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Firms 
)1160(   

rbf 47 0,9167 
1  
из 
48 

3  
из 
12 

SVM - - - - - - - - 93,55 93,33 96,67 90,00 1 3 4 
+aSim 0,185 5  41 0 13 1 41 0 100 100 100 100 0 0 0 
+Sim 0,253 6 11 1 5 2 11 1 98,31 98,33 96,67 100 1 0 1 

poly 31 0,8438 
0 
из 
48 

4 
из 
12 

SVM - - - - - - - - 93,10 93,33 90,00 96,67 3 1 4 
+aSim 0,915 6 3 2 7 3 1 3 96,55 96,67 93,33 100 2 0 2 
+Sim 1,078 8 9 2 11 2 3 2 96,55 96,67 93,33 100 2 0 2 

WDBC 
)30569(   

rbf 425 0,9887 
0 
из 

456 

11 
из 

113 

SVM - - - - - - - - 98,44 98,07 97,20 99,53 10 1  11  
+aSim 0,142 36 7 3 7 3 7 3 99,58 99,47 99,44 99,53 2 1 3 
+Sim 0,152 36 13 1 13 1 13 1 99,86 99,82 100 99,53 0 1 1 

rbf 425 0,9949 
0 
из 

456 

8 
из 

113 

SVM - - - - - - - - 98,87 98,59 97,76 100 8 0 8 
+aSim 0,035 23 5 0 5 0 5 0 100 100 100 100 0 0 0 
+Sim 0,070 27 11 0 11 0 11 0 100 100 100 100 0 0 0 

German 
)241000( 

 

rbf 798 0,7473 
0 
из 

800 

50 
из 

200 

SVM - - - - - - - - 96,54 95,00 99,57 84,33 3 47 50 
+aSim 0,921 208 29 45 45 43 29 45 96,96 95,70 97,86 90,67 15 28 43 
+Sim 1,284 209 45 43 43 42 45 43 97,04 95,80 98,29 90,00 12 30 42 

rbf 799 0,7552 
0 
из 

800 

53 
из 

200 

SVM - - - - - - - - 96,33 94,70 99,43 83,67 4 49 53 
+aSim 1,186 219  39 41 43 45 39 41 97,11 95,90 98,29 90,33 12 29 41 
+Sim 1,796 225 35 47 47 48 35 47 96,72 95,30 99,00 86,67 7 40 47 

Heart 
)13270(   

rbf 211 0,8962 
1 
из 

216 

9 
из 
54 

SVM - - - - - - - - 96,67 96,30 96,67 95,83 5 5 10 
+aSim 0,542 35 37 5 25 6 37 5 98,34 98,15 98,67 97,50 2 3 5 
+Sim 0,780 43 17 6 31 7 17 6 98,00 97,78 98,00 97,50 3 3 6 

rbf 208 0,8389 
1 
из 

216 

12 
из 
54 

SVM - - - - - - - - 95,68 95,19 96,00 94,17 6 7 13 
+aSim 0,504 40 25 6 25 8 25 6 98,00 97,78 98,00 97,50 3 3 6 
+Sim 0,601 43 27 8 47 8 27 8 97,32 97,04 96,67 97,50 5 3 8 

Ionosphere 
)34351(   

rbf 217 0,9983 
1 
из 

281 

3 
из 
70 

SVM - - - - - - - - 98,44 98,86 100 98,22 0 4 4 
+aSim 0,224 6 9 2 11 2 9 2 99,21 99,43 99,21 99,56 1 1 2 
+Sim 0,448 14 9 2 11 2 9 2 99,21 99,43 99,21 99,56 1 1 2 

rbf 220 0,9925 
1 
из 

281 

5 
из 
70 

SVM - - - - - - - - 97,67 98,29 100 97,33 0 6 6 
+aSim 0,207 9 11 3 13 3 11 3 98,80 99,15 98,41 99,56 2 1 3 
+Sim 0,414 16 11 3 13 3 11 3 98,80 99,15 98,41 99,56 2 1 3 
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Для оценки качества каждого типа класси-
фикации (SVM, +aSim, +Sim) использовались 
общеизвестные в машинном обучении показате-
ли качества классификации, такие как: показа-
тель F -меры, показатель общей точности клас-
сификации ( Accur), показатель чувствительности 
( Se), показатель специфичности ( Sp), число 
ошибок I и II рода ( IEr  и IIEr ), число ошибок на 
обучающей и тестовой выборках ( trainEr  и testEr ), 
общее число ошибок, показатель testAUC , рассчи-
танный по тестовой выборке. В столбцах 16–21 
таблицы 1 представлены значения показателя F -
меры, показателя общей точности классифика-
ции, показателя чувствительности, показателя 
специфичности, а также число ошибок I и II рода; 
в столбцах 4–6 приведены значение показателя 

testAUC , число ошибок на обучающей и тестовой 
выборках; в столбце 22 представлено общее чис-
ло ошибок, допущенных классификатором. 

После разработки SVM-классификатора бы-
ла выполнена оценка числа объектов, попавших 
внутрь разделительной полосы, то есть полосы, в 
которой выполняется условие 11  bzw . 
Для рассматриваемых учебных наборов во всех 
случаях, представленных в таблице 1, все 100 % 
ошибочно классифицированных объектов оказа-
лись внутри разделительной полосы. Кроме то-
го, для всех наборов анализировалась возмож-
ность применения kNN-классификатора: оцени-
валась ширина Ω-области, в которую попадают 
все ошибочно классифицированные SVM-
класси-фикатором объекты из учебного набора 
данных, и количество объектов, оказавшихся 
внутри нее. Во всех экспериментах, информация 
по которым представлена в таблице 1, оказалось, 
что Ω-область расположена внутри разделитель-
ной полосы. 

В результате удаления из каждого учебного 
набора U  (таблица 1) кортежей, соответствую-
щих объектам  -области, был получен набор 
данных GUW \ , число кортежей в котором 
меньше числа кортежей в соответствующем 
учебном наборе данных. 

Далее для объектов Ω-области производи-
лось уточнение результатов классификации с 
помощью kNN-классификатора на основе кор-
тежей набора GUW \  при различном числе 
соседей (изменяющемся от 1 до 51) с использо-
ванием различных способов голосования (а 
именно взвешенного и невзвешенного голосова-
ния) и различных способов оценки близости ме-
жду объектами. Для каждого способа голосова-
ния определялось оптимальное число соседей 
(столбцы 10, 12, 14 таблицы 1), при которых 

число ошибок классификации минимально 
(столбцы 11, 13, 15 таблицы 1). 

После применения kNN-классификатора с 
числом соседей, способом оценки близости и 
способом голосования, обеспечивающими ми-
нимальное число ошибок классификации, при 
разных вариантах (асимметричном и симмет-
ричном) расположения Ω-области относительно 
разделяющей гиперплоскости, качество итого-
вой классификации данных было вновь оценено 
посредством расчета значений различных пока-
зателей. Кроме того, было выполнено сравнение 
новых значений показателей качества со значе-
ниями этих же показателей, полученных на ос-
нове разработанного SVM-классификатора. 
Ячейки таблицы 1, соответствующие лучшему 
варианту kNN-классификатора, обеспечивающе-
му минимальное число ошибок классификации, 
выделены жирным шрифтом. 

Из таблицы 1 видно, что в большинстве слу-
чаев максимальное уточнение результатов клас-
сификации достигается при использовании 
асимметричной Ω-области, но в ряде экспери-
ментов двухэтапный метод классификации дает 
одинаковые результаты при использовании и 
асимметричной Ω-области, и симметричной Ω-
области, а иногда максимальное уточнение ре-
зультатов классификации достигается при ис-
пользовании симметричной Ω-области. Также из 
таблицы 1 видно, что нельзя однозначно опреде-
лить способ голосования и способ оценки близо-
сти, при которых бы всегда достигалось лучшее 
уточнение результатов классификации при при-
менении kNN-классификатора, поскольку в ряде 
экспериментов лучшее решение имеет место при 
невзвешенном способе голосования, а иногда – 
при взвешенном. 

В таблице 2 приведены значения показате-
лей F-меры, показателя точности ( Accur), сум-
марное число ошибок I и II рода (ErI+ErII) до и 
после применения kNN-классификатора, обеспе-
чившего лучшее уточнение результатов класси-
фикации, для классификации объектов, попав-
ших в Ω-область, символом   обозначена раз-
ница между соответствующими значениями по-
казателей SVM-классификации и нового клас-
сификатора, полученного при реализации пред-
ложенного двухэтапного метода классификации. 

По данным таблицы 2 видно, что использо-
вание предлагаемого двухэтапного метода клас-
сификации позволило повысить в среднем зна-
чение показателя F-меры на 1,96 %, а значение 
показателя точности классификации на 2,1 % по 
сравнению с соответствующими значениями, 
полученными только при использовании SVM-
классификатора, причем максимальное повыше-
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ние показателя F-меры составило 6,45 %, а пока-
зателя точности классификации – 6,67 %. 
Таблица 2 – Сравнение классификаторов 

Набор 
данных 

F-мера, % Accur, % ErI+ErII 

SVM 
SVM 

 +  
kNN 

  SVM 
SVM 

 +  
kNN 

  SVM 
SVM 

 +  
kNN 

  

Firms 
93,55 100 6,45 93,33 100 6,67 4 0 -4 
93,10 96,55 3,45 93,33 96,67 3,34 4 2 -2 

WDBC 
98,44 99,86 1,42 98,07 99,82 1,75 11 1 -10 
98,87 100 1,13 98,59 100 1,41 8 0 -8 

German 
96,54 97,04 0,5 95,00 95,80 0,8 50 42 -8 
96,33 97,11 0,78 94,70 95,90 1,2 53 41 -12 

Heart 
96,67 98,34 1,67 96,30 98,15 1,85 10 5 -5 
95,68 98,00 2,32 95,19 97,78 2,59 13 6 -7 

Ionosphere 
98,44 99,21 0,77 98,86 99,43 0,57 4 2 -2 
97,67 98,80 1,13 98,29 99,15 0,86 6 3 -3 

Среднее   1,96 2,10 -6 

Заключение 

По результатам проведенных эксперимен-
тальных исследований можно сделать вывод о 
том, что использование предложенного двух-
этапного метода повышает качество результатов 
классификации, так как применение kNN-
классификатора к объектам, расположенным 
вблизи гиперплоскости, разделяющей классы и 
определенной SVM-классификатором, уменьша-
ет число ошибочно классифицированных объек-
тов. Предлагаемый двухэтапный метод класси-
фикации позволяет принимать высокоточные 
решения по классификации сложноорганизован-
ных многомерных данных. 

В ходе дальнейших исследований планиру-
ется рассмотреть модификации kNN-алгоритма, 
реализующие взвешенные варианты учета бли-
жайших соседей с применением различных весо-
вых функций, оценивающих степень важности i -
го соседа для классификации объекта z , в част-
ности алгоритм k экспоненциально взвешенных 
ближайших соседей, алгоритм парзеновского 
окна фиксированной (или переменной) ширины, 
алгоритм потенциальных функций, а также алго-
ритмы быстрого поиска ближайших соседей. 

Библиографический список 

1. Воронцов К.В. Математические методы обу-
чения по прецедентам (теория обучения машин). 141 с. 
[Электронный ресурс]. URL: www.MachineLearning.ru 
(дата обращения: 27.12.2016). 

2. Вьюгин В.В. Элементы математической тео-
рии машинного обучения: учеб. пособие. М.: МФТИ, 
2010. 252 с. 

3. Vapnik V. Statistical Learning Theory. New 
York: John Wiley & Sons. 1998. 732 p. 

4. Lean Yu, Shouyang Wang, Kin Keung Lai, 
Ligang Zhou. Bio-Inspired Credit Risk Analysis. Com-
putational Intelligence with Support Vector Machines. 
Springer-Verlag Berlin Heidelberg, 2008. 244 p. 

5. Демидова Л.А., Соколова Ю.С. Аспекты при-
менения алгоритма роя частиц в задаче разработки 
SVM-классификатора // Вестник Рязанского государст-
венного радиотехнического университета. 2015. № 53. 
С. 84-92. 

6. Сегаран Т. Программируем коллективный ра-
зум. СПб.: Символ-Плюс, 2008. 368 с. 

7. Wang H., Bell D. Extended k-Nearest Neigh-
bours Based on Evidence Theory. The Computer Journal. 
2004. Vol. 47 (6). P. 662-672. 

8. Bezdek J.C., Keller J., Krisnapuram R., Pal 
N.R. Fuzzy Models and Algorithms for Pattern Recogni-
tion and Image Processing. Springer Science+ Business 
Media. 2005. 785 p. 

9. Демидова Л.А., Коняева Е.И. Кластеризация 
объектов с использованием FCM-алгоритма на основе 
нечетких множеств второго типа и генетического алго-
ритма // Вестник Рязанского государственного радио-
технического университета. 2008. № 26. С. 46-54. 

10. Демидова Л.А., Тишкин Р.В., Юдаков А.А. 
Разработка ансамбля алгоритмов кластеризации на 
основе матриц подобия меток кластеров и алгоритма 
спектральной факторизации // Вестник Рязанского 
государственного радиотехнического университета. 
2013. № 4-1 (46). С. 9-17. 

11. Demidova L., Nikulchev E., Sokolova Yu. The 
SVM Classifier Based on the Modified Particle Swarm 
Optimization // International Journal of Advanced Com-
puter Science and Applications (IJACSA). 2016. Vol. 7. 
no. 2. P. 16-24. 

12. Demidova L., Sokolova Yu. Modification Of 
Particle Swarm Algorithm For The Problem Of The SVM 
Classifier Development // В сборнике: 2015 Internation-
al Conference «Stability and Control Processes» in 
Memory of V.I. Zubov (SCP). 2015. P. 623-627. 

13. Демидова Л.А., Никульчев Е.В., Соколова 
Ю.С. Классификация больших данных: использова-
ние SVM-ансамблей и SVM-классификаторов с мо-
дифицированным роевым алгоритмом // Cloud of Sci-
ence. 2016. Vol. 3. № 1. P. 5-42. 

14. Демидова Л.А., Соколова Ю.С. Разработка 
ансамбля SVM-классификаторов с использованием де-
корреляционного алгоритма максимизации // Информа-
тика и системы управления. 2016. № 1 (47). С. 95-105. 

15. Demidova L., Sokolova Yu. Development of 
the SVM Classifier Ensemble for the Classification Accu-
racy Increase // 6th Seminar on Industrial Control Sys-
tems: Analysis, Modeling and Computation (ITM Web of 
Conferences). 2016. Vol. 6. 

16. Демидова Л.А., Соколова Ю.С. Использо-
вание SVM-алгоритма для уточнения решения задачи 
классификации объектов с применением алгоритмов 
кластеризации // Вестник Рязанского государственно-
го радиотехнического университета. 2015. № 1 (51). 
С. 103-113. 

17. Demidova L., Nikulchev E., Sokolova Yu. Use of 
Fuzzy Clustering Algorithms’ Ensemble for SVM Classifier 
Development // International Review on Modelling and 
Simulations (IREMOS). 2015. Vol. 8. no. 4. P. 446-457. 

18. Demidova L., Sokolova Yu. SVM-Classifier 
Development With Use Of Fuzzy Clustering Algorithms' 
Ensemble On The Base Of Clusters' Tags' Vectors' Simi-



ISSN 1995-4565. Вестник РГРТУ. 2017. № 62.  131

larity Matrixes // В сборнике: 16th International Symposi-
um on Advanced Intelligent Systems 2015. P. 889-906. 

19. Demidova L., Sokolova Yu. Training Set Form-
ing For SVM Algorithm With Use Of The Fuzzy Cluster-
ing Algorithms Ensemble On Base Of Cluster Tags Vec-
tors Similarity Matrices // В сборнике: 2015 Internation-
al Conference «Stability and Control Processes» in 
Memory of V.I. Zubov (SCP). 2015. P. 619-622.  

20. Zhang H., Berg A.C., Maire M. Malik J. SVM-
KNN: Discriminative Nearest Neighbor Classification for 

Visual Category Recognition, Proceedings – 2006 IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition. Vol. 2. 2006. P. 2126-2136. 

21. Li R., Wang H.-N., He H., Cui Y.-M., Du Zh.-L. 
Support Vector Machine combined with K-Nearest Neigh-
bors for Solar Flare Forecasting, Chinese Journal of Astron-
omy and Astrophysics. vol. 7. no. 3. 2007. P. 441-447. 

22. Jun Sun, Choi-Hong Lai, Xiao-Jun Wu. Parti-
cle Swarm Optimisation: Classical and Quantum Perspec-
tives. CRC Press, 2011. 419 p. 

UDC 004.855.5 

TWO-STAGE DATA CLASSIFICATION METHOD BASED ON 
SVM-ALGORITHM AND THE k NEAREST NEIGHBORS ALGORITHM 
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Yu. S. Sokolova, senior teacher, RSREU, Ryazan; JuliaSokolova62@yandex.ru 

The classification problem of elaborate multidimensional data which is inherent in various socio-
economic, technical and other systems has been considered. The aim is the classification accuracy increase 
of elaborate multidimensional data by means of development of two-stage classification method based on the 
combined use of SVM and kNN classifiers. At the first stage of the classification method SVM classifier on 
the base of initial learning dataset U is developed and the width of Ω-area containing all objects classified 
erroneously by SVM classifier. Objects classified erroneously together with correctly classified objects 
which are also located in the Ω-area and the corresponding classes tags of objects from Ω-area form the 
new G dataset. At the second stage of the classification method kNN classifier developed on the base of in-
formation about the objects of U\G set is applied to all objects of G data set from Ω-area. In case of im-
provement of the classification quality of objects belonging to Ω-area, the offered two-stage method can be 
recommended for classification of new objects. The parameters values of kNN classifier are defined experi-
mentally to provide the greatest possible classification accuracy of objects. As the correctly classified objects 
can also get to Ω-area created in the above-stated way, the condition of applicability of the offered method is 
general improvement of classification quality. The given results of experimental studies confirm the efficien-
cy of the offered method application in the classification problem of elaborate multidimensional data. 

Key words: SVM classifier, support vectors, kernel function type, kernel function parameters, regulari-
zation parameter, kNN classifier, classification method. 
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