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Abstract — In this paper we explore the Min-Sum decoding 

algorithm for LDPC codes with self-correction (SC-MS) 

modification and how it affects the error correction performance 

for quantized input data. Three levels of quantization are 

observed: 3-, 2- and 1-bit. 

It was shown that the self-corrected modification significantly 

improves the performance of Min-Sum decoding algorithm with 

quantized input in comparison with basic Min-Sum decoding 

algorithm. Convergence of the algorithm is also better than for 

basic Min-Sum algorithm. 

Results of error correction performance and convergence are 

presented for two codes: CCSDS (8176, 7156) and IEEE 802.3an 

(2048, 1723) LDPC. The results are also presented for the SC 

APP-based and basic Min-Sum decoding algorithms. 
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I.  INTRODUCTION 

Low density parity check (LDPC) codes were proposed 
more than 50 years ago by R. Gallager [1] and later 
rediscovered by MacKay and Neal [2] in 1990’s. Nowadays 
LDPC codes are widely used in various fields of technic. Many 
modern communication and broadcasting standards like DVB-
T2, DVB-S2, DVB-C2, Wi-Fi, WiMax, IEEE 802.3an utilize 
these codes to achieve better performance. In data storage 
systems error correction codes are used to guarantee data 
integrity and nowadays LDPC codes are also used in such 
systems.  

Also, for decoding of LDPC codes Gallager proposed some 
algorithms. The most powerful of them is sophisticated 
probabilistic iterative belief-propagation (BP) based algorithm. 
The main drawback of the BP decoding algorithm is the 
computational complexity. To work in real time this decoding 
algorithm requires very powerful computational devices that 
are not possible to use in some applications. This forced the 
appearance of simplified modifications of this algorithm. Of 
course, there is some error performance degradation for such 
modifications, so it isn’t possible to achieve near the Shannon 
limit with these algorithms, but they can be used for 
implementation of LDPC decoders under different restrictions, 
like power and computational restrictions. One of the ways to 
reduce these restrictions is to use fixed point data 
representation inside the decoder, also input data for the 
decoder can be quantized and represented as fixed point 

numbers itself. For example, in data storage systems the most 
common input data representation is 1-bit values. 

Previously in [3] we explored the behavior of self-corrected 
a posteriori probability (APP) based decoding algorithm in case 
of quantized input. In this paper we extend those results with 
exploration of self-correction modification of a well-known 
Min-Sum algorithm. 

The paper is organized as follows. Next section contains 
some common definitions and notations used in this paper. 
Section III consists of descriptions of observed decoding 
algorithms. Common description of simulation model and all 
LDPC codes used in this paper, parameters of performed 
experiments and obtained results are provided in Section IV. 
And finally, Section V concludes this paper. 

II. DEFINITIONS AND NOTATIONS 

Each LDPC code can be denoted as a matrix of a certain 
kind – check matrix, which contains for the most part zeros and 
just few ones. Thus, a LDPC (𝑁, 𝐾)code can be defined by the 
check matrix 𝐇 consisting of 𝑁 columns and 𝑀  ≥  𝑁  −  𝐾 
rows. 

We refer to the sets of ones in i-th column of the check 
matrix 𝐇 as 𝑁(𝑖), and in j-th row as 𝑀(𝑗). Besides, we refer as 
𝑁(𝑖) – {𝑗} and 𝑀(𝑗) – {𝑖} to same sets 𝑁(𝑖) and 𝑀(𝑗) but 
excluding j-th and i-th elements respectively. 

Also, we define information nodes 𝑉𝑁 as the representation 
of all 𝑁 elements of a LDPC codeword, and the check nodes 
𝐶𝑁 as the designation of all 𝑀 rows of the check matrix 𝐇. 

Suppose that in order to correct errors in a binary signal 
with BPSK modulation passing through an AWGN channel the 
LDPC code 𝐶 is used. In this case we denote the codeword of 
𝐶 and a corresponding transmitted sequence as 𝐱 =
[𝑥𝑖](𝑥𝑖 ∈ 0,1), and 𝑠(𝑥) = 𝐬 = [𝑠𝑖] respectively. Then, if we 
denote 𝑛(𝑥) = 𝐧 = [𝑛𝑖] as statistically independent Gaussian 
random variables with zero mean and variance 𝑁0/2, the 
received sequence 𝐲 will be equal to 𝐲  =  𝐬  +  𝐧. 

III. DECODING ALGORITHMS 

In this research the following LDPC decoding algorithms 
were used: Min-Sum, self-corrected Min-Sum and self-
corrected APP-based decoding algorithms. These algorithms 



 

 

 

 

can be described as modifications of the logarithmic likelihood 
ratio (LLR) BP decoding algorithm [1]. This algorithm 
includes two main operations that are repeated in iterative 
manner: check nodes updating and variable nodes updating. 
The first of them uses complicated box-plus operator [4] that 
can be presented in the next form: 

𝐿𝑠𝑢𝑚(𝐿1, 𝐿2) = 𝑠𝑖𝑔𝑛(𝐿1)𝑠𝑖𝑔𝑛(𝐿2)𝑚𝑖𝑛∗(|𝐿1|, |𝐿2|), 

where: 

𝑚𝑖𝑛∗(|𝐿1|, |𝐿2|) = 𝑚𝑖𝑛(|𝐿1|, |𝐿2|) + 𝑔(|𝐿1|, |𝐿2|), 

𝑔(|𝐿1|, |𝐿2|) = 𝑙𝑛(1 + 𝑒–|𝐿1+𝐿2|) − 𝑙𝑛(1 + 𝑒–|𝐿1−𝐿2|). 

It’s easy to see that the most complex part of the operator is 
computation of 𝑔(𝐿) function which includes natural 
logarithm.  

There are few approaches to overstep these complex 
computations. One of them is to drop the computation of the 
𝑔(𝐿) functions which is possible because |𝑔(𝐿1, 𝐿2)|  ≤
 0.693. In this case we come to the decoding algorithm which 
is well-known as a Min-Sum decoding algorithm [5]. For this 
algorithm the box-plus operator is replaced by finding the 
minimum value of 𝐿𝑖 operation and multiplying sequence on 
the check nodes updating step. Use of this approach leads to a 
significant simplification of the LLR BP decoding algorithm. 

To achieve better performance with a reasonable rise of 
computational complexity the self-correction technic [6] can be 
applied to the Min-Sum decoding algorithm. The idea is to 
check sing of variable nodes messages. If for some message 
sign differs for the current from the previous one than this 
message is set to zero. Formalization of the idea can be 
represented as follows: 

𝑖𝑓 𝑠𝑖𝑔𝑛(𝐿𝑡𝑚𝑝) = 𝑠𝑖𝑔𝑛(𝐿) 𝑡ℎ𝑒𝑛 𝐿 = 𝐿𝑡𝑚𝑝, 

𝑒𝑙𝑠𝑒 𝐿 =  0, 

where 𝐿𝑡𝑚𝑝 – current message, 𝐿 – message from the 

previous iteration. 

The further simplification of variable nodes processing lead 
from Min-Sum decoding algorithm to APP-based algorithm 
[7]. The self-correction technique can be applied to APP 
algorithm to achieve better performance. More detailed 
description of the algorithm can be found in [3].  

Table 1 contains estimation of computational complexity 
for the described algorithms. Estimation is obtained as a 
number of arithmetical operations necessary for algorithms’ 
implementation in case of different code parameters.  

IV. SIMULATION RESULTS 

The model from [9] was used to obtain simulation results. 
Its high flexibility allows running simulations for various 
LDPC codes and on different OpenCL [10] platforms with 
minimal source code modifications. 

 

TABLE I.  DECODING ALGORITHMS COMPUTATIONAL COMPLEXITY 

Algorithm Min-Sum SC Min-Sum SC APP-based 

(8176, 7156) 
code 

181916 190102 149212 

(2048, 1723) 

code 
60522 62570 48234 

 

Figure 1.  Bit error rates for (8176,7156) code with floating point input 

Figure 2.  Bit error rates for (2048,1723) code with floating point input 

As in [3] simulation results are presented for two codes. 
The first is a quasi-cyclic EG N = 8176, M = 7156 CCSDS 
LDPC code [11] and the second is an algebraic constructed N = 
2048, M = 1723 IEEE 802.3an standard LDPC code [12]. For 
both codes maximum number of decoding iterations is 50. 

Obtained results are present in the following figures. First 
are results for both codes and all explored decoding algorithms 
plus BP decoding algorithm in case of unquantized input in 
Fig. 1 and Fig 2. Then results for 3-, 2- and 1-bit quantized 
input are presented in Fig 3 and Fig 5. 



 

 

 

 

 

 

Figure 3.  Bit error rates for (8176,7156) code with quantized input 

Figure 4.  Average number of decoding iterations for (8176,7156) code 

Simulation results show that SC Min-Sum decoding 
algorithm provides better decoding performance than basic 
Min-Sum for both explored codes. We can see that 
performance gain grows depending on the quantization type. It 
starts from about 0.3-0.5 dB in case of unquantized 
implementation and reaches 1.2-1.5 dB for hard 1-bit case. And 
for 2- and 3-bits quantization it is 0.4-0.7 dB and 0.5-1.0 dB 
respectively. Results are slightly different for SC APP 
decoding algorithm. It is still outperformed by the SC Min-
Sum for cases of unquantized, 3- and 2-bits implementations 
with performance gain varying from 0.6 to 0.4 dB. But, in case 
of hard 1-bit quantization SC APP shows better error 
correction capability. For IEEE code the results are very 
similar. SC APP-based decoding algorithm outperform SC 
Min-Sum algorithm for the case of hard 1 bit input for about 
0.3 dB. In other cases SC Min-Sum performs better and the 
gain is about 0.4 dB for unquantized and 3-bit quantized input 
and only about 0.2 dB for 2-bit input.  

Figure 5.  Bit error rates for (2048,1723) code with quantized input 

Figure 6.  Average number of decoding iterations for (2048,1723) code 

Results presented in Fig 4 and Fig 6 shows average number 
of iterations for two codes and three explored decoding 
algorithms in case of different quantization. It can be seen that 
under all conditions SC Min-Sum requires a smaller number of 
iterations than basic Min-Sum algorithm. Comparing to SC 
APP-based decoding SC Min-Sum requires less iterations in 
case of 2- and 3-bit decoding for both codes, and more 
iterations in case of hard 1-bit decoding.  

In Fig. 7 distribution of iterations on which decoding was 
successfully finished is shown. And Fig 8 shows the 
distribution for first 20 iterations in more details. Simulation 
was made for IEEE code at Eb/N0 = 5.5 dB. It can be seen that 
distribution for basic Min-Sum algorithm has a longer tail and 
a wave-like pattern. While SC Min-Sum and SC APP-based 
decoding algorithms have much lower tail. Also SC Min-Sum 
has a bit narrower distribution than SC APP that means that in 
equal conditions it converges faster. 



 

 

 

 

Figure 7.  Number of completed iterations for (2048,1723) code at 5dB SNR, 

iterations 0 to 50 

Figure 8.  Number of completed iterations for (2048,1723) code at 5dB SNR, 

iterations 0 to 20 

V. CONCLUSION 

In this paper behavior of self-corrected modification of 
Min-Sum decoding algorithm in case of roughly quantized 
input was investigated. It was shown that advantage of self-
corrected Min-Sum algorithm over basic Min-Sum grows when 
switching to more rough quantization. Higher computational 
complexity of self-corrected modification is covered by better 
convergence as can be seen in Fig 4 and Fig 6. 

Min-Sum-SC decoding algorithm shows better performance 
than APP-SC algorithm with the same maximum number of 

decoding iterations under all conditions except 1-bit input for 
both considered codes as shown in Fig 3 and Fig 5. Also, much 
lower computational complexity of the APP-based algorithm 
gives it additional advantage over Min-Sum algorithm in case 
of rough quantization. 

From these results, we conclude that in case of roughly 
quantized input self-corrected Min-Sum can be preferred to 
basic Min-Sum as it achieves significantly better error 
correction performance through low increase of complexity. 
But under certain conditions it worth considering different 
decoding algorithm like APP-SC. 
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