
Low-Latency CUDA LDPC Decoder

for SDR Solutions
Igor Volkov, Aleksei Kharin, Evgeny Likhobabin

Aleksei Ovinnikov and Vladimir Vityazev, Member, IEEE

Department of Telecommunications and Foundations of Radio Engineering

Ryazan State Radio Engineering University, RSREU

Ryazan, Russia

volkov.i.y@tor.rsreu.ru, kharin.a.v@tor.rsreu.ru, likhobabin.e.a@tor.rsreu.ru

ovinnikov.a.a@tor.rsreu.ru, vityazev.v.v@rsreu.ru

Abstract—This paper outlines a method for low-latency CUDA
LDPC decoder implementation applicable for software-defined
radio (SDR) solutions. The traditional approach to CUDA LDPC
decoder implementation allows to get very high decoder through-
put but has high decoding latency.

It is shown that the proposed implementation of the CUDA
LDPC decoder allows to significantly reduce the decoding latency.
NVIDIA RTX 2080 was used as a simulation platform. Obtained
latency and throughput values satisfy technical requirements for
ultra low latency 5G services in NGMN specifications.

Index Terms—LDPC codes, CUDA, min-sum algorithm, soft-
ware defined radio, low latency.

I. INTRODUCTION

NOWADAYS LDPC codes [1] are widely used in many

modern communication standards like DVB-T2/S2 [2],

WiFi [3], WiMax [4] and etc. LDPC decoding algorithms are

very complex, therefore, in recent years, parallel implementa-

tions of such algorithms on GPUs have been widely used [5]-

[12]. One of the most popular approaches for implementing

such decoders is a massively-codeword decoder with numerous

codewords processing in parallel [5], [7], [9], [12]. This

approach allows to get a good ratio between an amount of

computing and an overhead of interaction with a GPU and

also allows to hide GPU memory latency during decoding

process. Because of these features, such decoders show a

large throughput that can reach several Gbps [11]. However, to

achieve this throughput, it is necessary to accumulate a packet

of input codewords, which leads to decoding latency increas-

ing up to hundreds of milliseconds [9], [12]. This approach is

well established for simulation of telecommunication systems,

but in such cases as software defined radio (SDR) processing

with high latency is unacceptable. For example, in modern

communication standards latency of even 1 ms is critical

[13], [14]. For short LDPC codes, e.g. (1944, 972) code from

[3], effective approaches to developing low-latency decoders

already exist [11]. In such approaches, all calculations of a

decoder take place in the high-speed local memory of the

GPU. However, the limited size of this memory does not

allow the use of such design with codes longer than several

This work was supported by Russian Science Foundation under Grant 17-
79-20302.

thousand bits. For these reasons, in this paper, we propose

CUDA LDPC decoder design with low latency (less than 0.3

ms) for SDR solutions which can process with quasi-cyclic

(QC) LDPC codes of different length.

The paper is organized as follows. In the next section, we

give a brief review of used LDPC code and CUDA program-

ming model, then describe proposed decoder implementation

in detail. In Section III results of decoder efficiency estimation

are presented. Finally, Section IV concludes the paper.

II. DECODER IMPLEMENTATION

A. LDPC code

Any LDPC code can be represented as a parity check matrix

H which contains mostly zeros and only a small number of

ones. A (N,K) LDPC code is represented as the matrix H

which includes M ≥ N−K rows and N columns. We refer to

the M rows of H as check nodes (CN), and to all the elements

of a LDPC codeword as variable nodes (VN).

One of the well-known types of LDPC codes are QC-LDPC

codes used in various communication standards [3], [4]. QC-

LDPC codes have been considered as a promising candidate

for forward error correction in 5G systems [15]. The matrix

H for such codes can be represented as H = PHb , where P
is cyclic-permutation matrix, and Hb is the base matrix. Hb

consist of two parts Hb = [Hb1 Hb2].
Size of Hb1 is equal to mb × kb, where kb = nb −mb. In

turn, kb = K/z and nb = N/z where z is the circulant size.

This part corresponds to the systematic bits. The matrix Hb2

of size mb×mb, in turn, corresponds to the parity-check bits.

In this paper, we use the custom QC-LDPC (16200, 9000)

code. The circulant size for the presented code is z × z,

where z = 90. Maximum row and column weights of the

proposed code are greater than similar weights of the (16200,

9000) code from the DVB-S2 standard [2] and equal to 12

and 7 respectively. As shown in Figure 1, the proposed code

demonstrates better bit error rate performance in comparison

with the DVB-S2 (16200, 9000) code. Estimation of bit error

rate was performed for the following parameters: decoding

algorithm - normalized MSA, maximum decoding iteration

number Imax = 20, modulation type - BPSK, channel model

- AWGN.

Authorized licensed use limited to: Carleton University. Downloaded on November 03,2020 at 01:26:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Bit error rates for proposed QC-LDPC (16200, 9000) and for DVB-S2
(16200, 9000) codes

B. Decoding algorithm

As a decoding algorithm the Min-Sum Algorithm (MSA)

was chosen in this work. The MSA is a simplified version of

the near-optimal log-likelihood ratio based belief propagation

(LLR BP) algorithm and is based on the criterion of a symbol-

wise maximum of a posteriori probability (APP) [16], [17]. It

is the widespread algorithm described in a detail in many other

papers [8]-[12]. The algorithm is based on the transmission

of messages with bit reliability between CNs and VNs with

subsequent calculation of APP for all N bits of a codeword.

Denote messages between ith variable and jth check nodes

(V2C) as Li→j and messages between j check and i variable

nodes (C2V) as Lj→i. Also define LAPP
i as APP of ith bit

of a codeword.

The proposed implementation of the MSA differs from

the state-of-art decoder one main feature: for better memory

utilization Li→j and Lj→i messages are stored as constituent

parts (first and second minimal C2V messages, minimal bit

position as index of minimal V2C message, signs of C2V

messages) and computed as necessary as:

Lj→i = αi→j ·

{

submin(βi→j), if Li→j is min V2C

min(βi→j), otherwise
, (1)

Li→j = LAPP
i − Lj→i, (2)

where αi→j , βi→j – a sign and an absolute value of the

message Lj→i respectively. This approach allowed us to hide

memory latency during decoding process.

C. CUDA programming model

The main component of any CUDA device is a set of

streaming multiprocessors (SMs) that perform actual compu-

tations. Each SM has a small amount of high-speed memory

and consists of several streaming processors (SPs). Besides

this memory, each GPU has a large on-board DRAM [18].

Programming model of CUDA device consists of executable

threads combined in a thread blocks grid. CUDA memory hi-

erarchy consists of three main levels: per-thread local memory,

per-block shared memory and device memory which is divided

into global and constant. Constant memory, as well as global

memory, is a global scope memory, but it is read-only and has

faster access than global memory [18].

As GPU development experience shows [5]-[12], the or-

ganization of proceeding with memory largely determines

the overall efficiency and throughput of the final software.

Therefore, there are two main requirements for GPU software

developed that can be distinguished: high-speed local, shared

and constant memory should be used as much as possible;

memory collisions should be minimized.

D. Memory organization

As follows from the MSA description [16], [17], there are

four main components in the decoding algorithm: check matrix

H, input estimations of received symbols (LLRs), a posteriori

probability for each element of a codeword (APPs), C2V and

V2C messages. The distribution of these components in the

CUDA device memory is shown in Figure 3.

To reduce the required amount of memory the check matrix

H is represented in the form of two smaller matrixes: one for

positions and one for shifts of non-zero elements of H.

Both, LLR and APP values are stored in global memory. For

better memory utilization, at the beginning of each decoding

iteration latest APP values are copied to shared memory. Even

though LLR values are constant during decoding, they cannot

be stored in constant memory due to their size.

In the decoding process, C2V and V2C values are used

quite often, and it would be better to place them in fast

shared memory. However, the amount of shared memory is

insufficient to store all messages even in transformed represen-

tation. Therefore, C2V and V2C messages are stored in global

memory and, like APPs, are copied to the shared memory at

the beginning of each decoding iteration.

E. Decoder architecture

Referring to Figure 2a the decoder can be divided into four

main parts, each part is represented by its own CUDA pro-

gram kernel: codeword initialization, early termination check

(syndrome calculation), APP updating, hard decision making.

The decoder initialization kernel is designed to set the initial

values of all the arrays involved in the decoding process.

The APP update core is the main core of the LDPC decoder.

It is intended for node messages and APPs updating and is

launched by M check threads. The main steps of this core are

presented in Figure 2b. At the beginning of each iteration the

kernel copies all values required for calculation from global to

local memory: first and second minimal check values, the posi-

tion of the bit with minimal absolute value of message for the

current check, signs of bit messages and APPs for connected

bits from the previous iteration. At the next step search for

new first and second minimum values, their positions, as well

as recalculation of message signs are performed. Afterward,

each check calculates messages transmitted to connected bits

and sums them into the corresponding APP value. To avoid

collisions, an atomic addition is used when summing messages

from multiple checks to a single APP. At the end the kernel

Authorized licensed use limited to: Carleton University. Downloaded on November 03,2020 at 01:26:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Decoder architecture

Fig. 3. Memory organization of CUDA device

copies new first and second minimum values, minimal bit

position, and recalculated signs of bits to check messages

backward to global memory.

The hard decision making kernel provides an estimation of

transmitted codeword based on calculated APPs.

The early termination (ET) check kernel is developed to

calculate a decoding syndrome S. If S = 0, the kernel sets the

corresponding flag in global memory and subsequent decoding

iterations are skipped. After decoding, this flag is copied to

the host as a mark of successful decoding.

The main parameter that determines how the algorithm will

be executed on a CUDA device is a grid of thread blocks that

can be one-, two-, or three-dimensional. This grid describes

how many threads and blocks will be used by the kernel. In the

proposed implementation (see Figure 4), a two-dimensional

NCW × zG grid is used. Rows and columns of the grids are

representing processed codewords and check matrix circulants

respectively. Thus, each block contains z = 90 threads that

process rows or columns of circulant, depending on the current

running CUDA kernel. For the codeword initialization and the

hard decision kernels zG = N/z, one thread in these kernels

Fig. 4. Execution grid of thread blocks

represents the processing of one bit of a codeword. In its turn,

for the update APP and the ET check kernels zG = M/z, in

this case, one thread represents the processing of one check

of a codeword. It is worth noting that in the CUDA a number

of threads must be a multiple of 32, so 96 threads are started

for each circulant and 6 of them are idle.

III. SIMULATION RESULTS

During the simulations the test platform with the following

parameters was used: CPU - Intel Xeon E5-2620 2.4 GHz (12

Cores), RAM - 16 GB DDR-4 PC4-17000, GPU - NVIDIA

RTX 2080 with 2944 CUDA Cores.

As previously stated, there are two main criteria of decoder

efficiency: throughput and latency, where latency in our case is

time required to accumulate a packet of NCW codewords. The

throughput CLDPC of the proposed decoder was measured

on NVIDIA RTX 2080 for different values of NCW and

for 20 decoding iterations. Obtained results are presented in

the table I. The measured throughput also includes codeword

Authorized licensed use limited to: Carleton University. Downloaded on November 03,2020 at 01:26:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THROUGHPUT AND LATENCY COMPARISON

Paper Platform Code

Codewords
count,
NCW

Throughput,
CLDPC ,

Mbps

Latency,
tLAT , ms

[9]
GTX

660 Ti
(20000,
10000)

4480 250 358.4

[7]
GTX
570

(64800,
32400)

128 163.4 50.761

(16200,
9000)

128 186.1 11.142

[6]
Fermi
C2050

(64800,
32400)

16 107.8 9.618

[12]
Titan
XP

(64800,
32400)

8000 390 1329.23

(16200,
9000)

8000 450 288.01

This
paper

RTX
2080

(16200,
9000)

1 60.2 0.269

(16200,
9000)

6 130.5 0.745

initialization and ET check. All calculations were performed

with single precision.

To calculate decoder latency, we assume that the LDPC

decoder delay contributes most to overall receiver delay. In

this case, decoder latency can be calculated as follows:

tLAT =
CLDPC

N ·NCW

, (3)

where CLDPC — maximum throughput of the LDPC decoder.

Calculated latency of the proposed decoder for different

values of NCW also presented in the Table I. An analysis of

the developed decoder showed that for NCW greater than 6,

the decoder throughput ceases to increase due to performance

restrictions of the given GPU.

As shown in Table I, the proposed decoder implementation

with NVIDIA RTX 2080 GPU allows getting decoding latency

of less than 1 ms. The resulting latency is much less than

the latency in decoders with only codewords parallelization

[6], [7], [9], [12]. At the same time, the decoder throughput

remains quite high and reaches 130 Mbps.

The loading of GPU SMs in the proposed design is up to 95-

100%, which indicates the efficient organization of the algo-

rithm. Such a small decoding latency and decoder throughput

allow to use the proposed decoder for SDR solutions.

IV. CONCLUSION

The developed implementation of the LDPC decoder allows

getting an low level of decoding latency (less than 1 ms) while

maintaining a high throughput (more than 130 Mbps). These

latency and throughput values satisfy technical requirements

for ultra low latency 5G services in NGMN [14], which allows

using such decoders in modern SDR solutions. Moreover,

the proposed decoder satisfies the technical requirements of

most other services, except for four of them requiring greater

throughput in downlink. However, achieved throughput can

be significantly increased by using more powerful GPUs. In

addition, this implementation can be also easily scaled for

effective use with other GPUs by changing the number of

codewords processed in parallel.

REFERENCES

[1] R. G. Gallager, ”Low-density parity-check codes”, Cambridge, MA:
M.I.T. Press, 1963.

[2] European Telecommunications Standards Institute, “Digital Video Broad-
casting (DVB); Second generation framing structure, channel coding
and modulation systems for Broadcasting, Interactive Services, News
Gathering and other broadband satellite applications; Part 1: DVB-
S2”, European Telecommunications Standards Institute, ETSI EN 302
307-1 V1.4.1, November 2014. [Online]. Available: http://www.etsi.org.
[Accessed: Jan. 20, 2020].

[3] 802.11n-2009 - IEEE Standard for Information technology– Local and
metropolitan area networks– Specific requirements– Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications Amendment 5: Enhancements for Higher Throughput, 29 Oct.
2009, DOI: 10.1109/IEEESTD.2009.5307322

[4] 802.16e-2005 - IEEE Standard for Local and Metropolitan Area Networks
- Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access
Systems - Amendment for Physical and Medium Access Control Layers
for Combined Fixed and Mobile Operation in Licensed Bands, 28 Feb.
2006, DOI: 10.1109/IEEESTD.2006.99107

[5] G. Falcao, L. Sousa, V. Silva, L. Sousa, ”Massively LDPC Decoding on
Multicore Architectures”, IEEE Transactions on Parallel and Distributed
Systems, vol. 22 (2), pp. 309-322, April 2010.

[6] G. Falcao, J. Andrade, V. Silva, L. Sousa, ”GPU-based DVB-S2 LDPC
decoder with high throughput and fast error floor detection”, Electronics
Letters, vol. 47 (9), pp. 542-543, April 2011.

[7] Stefan Grönroos, Kristian Nybom, Jerker Björkqvist, ”Efficient GPU
and CPU-based LDPC decoders for long codewords”, Analog Integrated
Circuits and Signal Processing, vol. 73 (2), pp. 583–595, November 2012.

[8] G. Wang, M. Wu. B. Yin, J. R. Cavallaro, ”High throughput low
latency LDPC decoding on GPU for SDR systems”, 2013 IEEE Global
Conference on Signal and Information Processing, Austin, TX, USA, 3-5
December 2013.

[9] Y. Lin, W. Niu, ”High Throughput LDPC Decoder on GPU”, IEEE
Communications Letters, vol. 18, no. 2, pp. 344-347, February 2014.

[10] S. Keskin, T. Kocak, ”GPU-Based Gigabit LDPC Decoder”, IEEE
Communications Letters, vol. 21 (8), pp. 1703-1706, August 2017.

[11] J. Yuan, J. Sha, ”4.7-Gb/s LDPC Decoder on GPU”, IEEE Communi-
cations Letters, vol. 22 (3), pp. 478-481, March 2018.

[12] D. Kun, ”High throughput GPU LDPC encoder and decoder for DVB-
S2”, 2018 IEEE Aerospace Conference, Big Sky, MT, 3-10 March 2018.

[13] C.-P. Li, J. Jiang, W. Chen, T. Ji, J. Smee, ”5G ultra-reliable and low-
latency systems design”, 2017 European Conference on Networks and
Communications (EuCNC), Oulu, Finland, 12-15 June 2017.

[14] Yu H, Lee H, Jeon H (2017) What is 5G? Emerging 5G mobile services
and network requirements. Sustainability, 9, October 2017.

[15] “Double QC-LDPC codes with degree-3 for NR”, National Taiwan
University, 3GPP TSG RAN WG1 86, Gothenburg, Sweden, Aug. 2016.

[16] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.Y. Hu, ”Near-
Optimal Reduced-Complexity Decoding Algorithms for LDPC Codes”,
Proceedings of IEEE International Symposium on Information Theory,
Lausanne, Switzerland, July, 2002.

[17] D. Declercq, M. Fossorier and E. Biglieri, “Min-sum decoding” in
Channel Coding: Theory, Algorithms, and Applications. Waltham, MA,
USA: Academic Press Library in Mobile and Wireless Communications,
2014, ch. 4, sec. 3.4, pp. 230-232.

[18] NVIDIA Corp. (2019, Nov.). CUDA Toolkit Documentation v10.2.89.
[Online]. Available: https://docs.nvidia.com/cuda/

Authorized licensed use limited to: Carleton University. Downloaded on November 03,2020 at 01:26:28 UTC from IEEE Xplore. Restrictions apply.

